/ jueves 18 de abril de 2019

Ahora buscan "fotografiar" agujero negro en la Vía Láctea con radiotelescopio de Puebla

Así funciona el Gran Telescopio Milimétrico mexico-estadounidense

Nuestro Gran Telescopio Milimétrico, GTM, nos sorprendió, al conocer su participación en la primera e histórica fotografía de un agujero negro, pero su colaboración en este proyecto, no es lo único que realiza pues tiene en puerta otras investigaciones de la astrofísica, incluyendo, estudios sobre el agujero negro que se supone, existe en el centro de nuestra galaxia la Vía Láctea, llamado, Sagitario A*.

Aunque fue nombrado, Gran Telescopio Milimétrico, es en realidad un radiotelescopio. Con él, no se puede observar en luz visible, como con los telescopios de lentes y espejos, en donde nuestros ojos captan la luz proveniente del universo. Con un radiotelescopio, se captan otras frecuencias diferentes a la luz visible. Hay radiotelescopios para observar en: rayos X, rayos gamma, infrarrojo, ondas de radio, etc. Las ondas de estas radiaciones, se miden en longitud de onda, que puede ser tan larga que abarque kilómetros, o de menor tamaño, que se mida en metros, centímetros, milímetros, o menos. En particular, el Gran Telescopio Milimétrico, GTM, hace observaciones de ondas milimétricas, de ahí su nombre. Esa longitud de onda, corresponde a la radiación infrarroja y de rayos gamma.

El GTM, es un radiotelescopio mexico-estadounidense, en donde el Instituto de Astrofísica, Óptica y Electrónica, INAOE, cuenta con un 80 % de participación, mientras que la Universidad de Massachusetts, tiene el 20 % restante. Así, los astrofísicos nacionales y extranjeros, obtienen tiempo de observación para sus investigaciones.

La primera imagen de un agujero negro. En particular, se fotografió el agujero negro ubicado en el centro de la galaxia M87, en la constelación de Virgo, a 53.5 millones de años luz de distancia. EHT

Entre los estudios que se realizan con el GTM, está: la observación de galaxias, estudios de diversas regiones de formación de estrellas, estudios de galaxias mediante el corrimiento al rojo de su espectro, esto es, en la Gran Explosión, o Big Bang, que dio origen a nuestro universo, la materia salió disparada, se formaron las galaxias, y al observarlas, su luz se carga hacia el rojo en los espectros de luz de las galaxias, lo que significa, que están huyendo, es decir, siguen en movimiento, por causa del Big Bang.

La ventaja de observar en el milimétrico, radica que se puede recibir información que proviene de atrás de nebulosas. Con un telescopio convencional, no se puede observar atrás de las nubes de gas, pero si con un radiotelescopio. El GTM, recibe información de galaxias, tras las cortinas de nubes de gas. Se han realizado estudios sobre conglomerados masivos de galaxias. Otro estudio, fue sobre la nube molecular ubicada en la constelación de Orión; ha hecho mediciones de la temperatura del polvo, en la galaxia del Triángulo, la segunda más cercana a nosotros. Ha detectado el estallido de estrellas en otras galaxias, ha realizado observaciones en nubes de gas y polvo protoplanetarias, es decir, la detección de la posible formación de sistemas planetarios lejanos; ha observado el polvo, gas y la formación de estrellas en la galaxia NGC 4449, entre otros muchos estudios.

Sobre agujeros negros, el GTM se ha concentrado en el agujero negro que se cree, existe en el centro de nuestra galaxia, la Vía Láctea, llamado Sagitario A*.

Representación de cómo creemos es nuestra Vía Láctea. El punto indica la posición del Sol (no su tamaño). En el centro brillante de la galaxia, se encuentra el agujero negro Sagitario A*. NASA / JPL / Caltech (Modificada para la posición del Sol, en español)

Con el GTM, se han hecho estudios de la estructura asimétrica de Sagitario A*, así como de su forma geométrica. Estos estudios, han mejorado nuestro conocimiento, sobre la geometría de la emisión de radiación proveniente del centro galáctico. También, se logró modelar, matemáticamente, el tamaño y la dirección del supuesto agujero negro.

En la presentación de la primera fotografía de un agujero negro, conocimos la imagen del agujero negro, ubicado en la galaxia M87. Esta galaxia se encuentra en la constelación de Virgo, y se ubica a 53.5 millones de años luz de distancia. El agujero negro del centro de nuestra galaxia, la Vía Láctea, está a solo 26 mil años luz. Se intuye, que fotografiar el agujero negro Sagitario A* sería más fácil, al no estar tan lejos. Sin embargo, algo pasó en los intentos de fotografiarla, la red de telescopios del proyecto, Event Horizon Telescope, EHT, que tomaron la primera imagen, y en donde colabora el GTM, no pudo realizar esta fotografía, y el porqué, es aún un misterio para los astrónomos. Está por demás decir, que todos ellos, están tratando de resolver el misterio.

Fotografiar el agujero negro Sagitario A*, es una meta clara en el proyecto EHT, aún se desconoce, cuando podría ser. Tal vez, se cumpla lo prometido en la presentación de la primera imagen, en donde aseguraron, que otra meta, no es tener una imagen, sino un vídeo. ¿Conoceremos pronto el agujero negro de nuestra galaxia? Estamos a la espera. Tal vez, muchos jóvenes estén a tiempo de estudiar ciencias, e involucrarse en las observaciones con el GTM.

german@astropuebla.org


**** PARA SABER MÁS ****

www.lmtgtm.org

Nuestro Gran Telescopio Milimétrico, GTM, nos sorprendió, al conocer su participación en la primera e histórica fotografía de un agujero negro, pero su colaboración en este proyecto, no es lo único que realiza pues tiene en puerta otras investigaciones de la astrofísica, incluyendo, estudios sobre el agujero negro que se supone, existe en el centro de nuestra galaxia la Vía Láctea, llamado, Sagitario A*.

Aunque fue nombrado, Gran Telescopio Milimétrico, es en realidad un radiotelescopio. Con él, no se puede observar en luz visible, como con los telescopios de lentes y espejos, en donde nuestros ojos captan la luz proveniente del universo. Con un radiotelescopio, se captan otras frecuencias diferentes a la luz visible. Hay radiotelescopios para observar en: rayos X, rayos gamma, infrarrojo, ondas de radio, etc. Las ondas de estas radiaciones, se miden en longitud de onda, que puede ser tan larga que abarque kilómetros, o de menor tamaño, que se mida en metros, centímetros, milímetros, o menos. En particular, el Gran Telescopio Milimétrico, GTM, hace observaciones de ondas milimétricas, de ahí su nombre. Esa longitud de onda, corresponde a la radiación infrarroja y de rayos gamma.

El GTM, es un radiotelescopio mexico-estadounidense, en donde el Instituto de Astrofísica, Óptica y Electrónica, INAOE, cuenta con un 80 % de participación, mientras que la Universidad de Massachusetts, tiene el 20 % restante. Así, los astrofísicos nacionales y extranjeros, obtienen tiempo de observación para sus investigaciones.

La primera imagen de un agujero negro. En particular, se fotografió el agujero negro ubicado en el centro de la galaxia M87, en la constelación de Virgo, a 53.5 millones de años luz de distancia. EHT

Entre los estudios que se realizan con el GTM, está: la observación de galaxias, estudios de diversas regiones de formación de estrellas, estudios de galaxias mediante el corrimiento al rojo de su espectro, esto es, en la Gran Explosión, o Big Bang, que dio origen a nuestro universo, la materia salió disparada, se formaron las galaxias, y al observarlas, su luz se carga hacia el rojo en los espectros de luz de las galaxias, lo que significa, que están huyendo, es decir, siguen en movimiento, por causa del Big Bang.

La ventaja de observar en el milimétrico, radica que se puede recibir información que proviene de atrás de nebulosas. Con un telescopio convencional, no se puede observar atrás de las nubes de gas, pero si con un radiotelescopio. El GTM, recibe información de galaxias, tras las cortinas de nubes de gas. Se han realizado estudios sobre conglomerados masivos de galaxias. Otro estudio, fue sobre la nube molecular ubicada en la constelación de Orión; ha hecho mediciones de la temperatura del polvo, en la galaxia del Triángulo, la segunda más cercana a nosotros. Ha detectado el estallido de estrellas en otras galaxias, ha realizado observaciones en nubes de gas y polvo protoplanetarias, es decir, la detección de la posible formación de sistemas planetarios lejanos; ha observado el polvo, gas y la formación de estrellas en la galaxia NGC 4449, entre otros muchos estudios.

Sobre agujeros negros, el GTM se ha concentrado en el agujero negro que se cree, existe en el centro de nuestra galaxia, la Vía Láctea, llamado Sagitario A*.

Representación de cómo creemos es nuestra Vía Láctea. El punto indica la posición del Sol (no su tamaño). En el centro brillante de la galaxia, se encuentra el agujero negro Sagitario A*. NASA / JPL / Caltech (Modificada para la posición del Sol, en español)

Con el GTM, se han hecho estudios de la estructura asimétrica de Sagitario A*, así como de su forma geométrica. Estos estudios, han mejorado nuestro conocimiento, sobre la geometría de la emisión de radiación proveniente del centro galáctico. También, se logró modelar, matemáticamente, el tamaño y la dirección del supuesto agujero negro.

En la presentación de la primera fotografía de un agujero negro, conocimos la imagen del agujero negro, ubicado en la galaxia M87. Esta galaxia se encuentra en la constelación de Virgo, y se ubica a 53.5 millones de años luz de distancia. El agujero negro del centro de nuestra galaxia, la Vía Láctea, está a solo 26 mil años luz. Se intuye, que fotografiar el agujero negro Sagitario A* sería más fácil, al no estar tan lejos. Sin embargo, algo pasó en los intentos de fotografiarla, la red de telescopios del proyecto, Event Horizon Telescope, EHT, que tomaron la primera imagen, y en donde colabora el GTM, no pudo realizar esta fotografía, y el porqué, es aún un misterio para los astrónomos. Está por demás decir, que todos ellos, están tratando de resolver el misterio.

Fotografiar el agujero negro Sagitario A*, es una meta clara en el proyecto EHT, aún se desconoce, cuando podría ser. Tal vez, se cumpla lo prometido en la presentación de la primera imagen, en donde aseguraron, que otra meta, no es tener una imagen, sino un vídeo. ¿Conoceremos pronto el agujero negro de nuestra galaxia? Estamos a la espera. Tal vez, muchos jóvenes estén a tiempo de estudiar ciencias, e involucrarse en las observaciones con el GTM.

german@astropuebla.org


**** PARA SABER MÁS ****

www.lmtgtm.org

Policiaca

La matan a puñaladas en bar de la Prolongación de la 11 Sur

El cadáver fue llevado a la morgue, donde se esperaba que algún familiar llegue a identificarlo y reclamarlo

Local

Realizan diócesis “octavario” de oración para que termine la pandemia

Se unen  Puebla, Tlaxcala, Tehuacán y Huajuapan para rezarle a la Virgen de Ocotlán

Policiaca

Detienen a “El Moquillo”, cargaba crack y cristal 

El hombre fue asegurado en el municipio de Venustiano Carranza

Cine

Arena Ciudad de México estrena autocine con nueva normalidad

La apertura del espacio será la primera etapa de la reactivación progresiva de la industria del entretenimiento

Sociedad

Ejército intercepta a jet clandestino en Q. Roo y se desata balacera

El jet aterrizó en el kilómetro 61 de la la carretera José Maria Morelos-Polyuc aproximadamente a las 7:30 de la mañana

Local

Descarta PAN alianza con el PRI en Puebla rumbo al 2021

“Incluso nuestros estatutos las prohíben porque tenemos una ideología distinta”: Genoveva Huerta

Ecología

Glaciares en Perú retroceden 51% en 50 años por el cambio climático

El Área de Evaluación de Glaciares y Lagunas de la ANA revela que se han identificado nuevas lagunas relacionadas con el retroceso de los glaciares

Deportes

Estadio de Teziutlán, la posible nueva casa de Zaragoza FC

Afirman que el equipo de futbol tiene el aval del municipio de jugar ahí

Policiaca

La matan a puñaladas en bar de la Prolongación de la 11 Sur

El cadáver fue llevado a la morgue, donde se esperaba que algún familiar llegue a identificarlo y reclamarlo